YEAR

2023年

  • 2023年11月29日
  • 2023年12月22日

Our lab has just released a new preprint!

Our lab has published a new preprint! It has been observed that in the state of transcriptional activation, distinctive higher-order genomic structures and protein aggregates are formed, furthermore, the viscosity around genes increases, and the interaction time between enhancers and promoters is prolonged. This research was conducted in collaboration with Drs. Hiroaki Ohishi (in our lab), Soya Shinkai (RIKEN), Shuichi Onami (RIKEN), Kazufumi Hosoda (Ansanga Labs), and Yasuyuki Ohkawa (MIB, Kyushu U.)! https://www.biorxiv.org/content/10.1101/2023.11.27.568629v1 Recent imaging analyses have revealed that transcription is a dynamic process that switches between an active state, where genes are continuously transcribed by RNA Polymerase II, and an inactive state where transcription does not occur. This is known as transcriptional bursting and is a universal phenomenon observed across many species and cell types. It has been shown that this transition involves the interaction between enhancers and promoters, as well as the assembly of transcriptional regulatory factors. 転写因子は、遺伝子のプロモーター領域や、転写を調節するエンハンサーに結合します。これにより、RNAポリTranscription […]

  • 2023年9月20日
  • 2023年9月20日

We have been selected for JST CREST (Bio-DX)!

We have been selected for the JST CREST, “Innovation of Life Science through Digital Transformation Focused on Data-Driven and AI-Driven Technologies” (Bio-DX, Research Director: Professor Yasushi Okada). https://www.jst.go.jp/kisoken/crest/application/2023/230919/230919crest.pdf Research Project Title: Understanding the Mammalian Cell Fate Regulation Framework through Multimodal Spatiotemporal Integrated Omics Analysis. The lead researcher is Ochiai from Kyushu University. Main collaborators include Takuya Funatomi (Nara Institute of Science and Technology), Kazumitsu Maehara (Kyushu University Institute of Biodefense Medicine), and Soya Shinkai (RIKEN Center for Life Science Technologies). Research Overview: The process of mammalian development involves numerous stochastic elements and unknown factors, making a detailed understanding of the cell fate regulation mechanism challenging. In this research, we will target the early developmental stages of mice and organoids to analyze the heterogeneity in gene expression between cells, the epigenomic elements that regulate it, and intercellular interactions in a data-driven, multimodal, and spatiotemporal manner, elucidating the cell fate regulation mechanism. […]

  • 2023年6月2日
  • 2023年6月2日

A review article was published in CURRENT OPINION IN STRUCTURAL BIOLOGY

A review article titled “Organization of transcription and 3D genome as revealed by live-cell imaging,” written with Hiroshi Kimura and Yuko Sato of Tokyo Institute of Technology, has been published in CURRENT OPINION IN STRUCTURAL CURRENT OPINION IN STRUCTURAL BIOLOGY.https://doi.org/10.1016/j.sbi.2023.102615It summarizes the relationship between higher-order genomic structure and gene transcription as revealed by live cell imaging.